- [6] A. Roedig, H.G. Kleppe, G. Märkl & M. Schlosser, Chem. Ber. 102, 1610 (1969); A. Roedig, G. Märkl, F. Frank, R. Kohlhaupt & M. Schlosser, ibid. 100, 2730 (1967); A. Roedig, M. Schlosser & H.A. Renk, Angew. Chem. 78, 448 (1966); A. Roedig & G. Märkl, Liebigs Ann. Chem. 659, 1 (1962).
- [7] R.Gompper & O.Christmann, Chem. Ber. 94, 1784 (1961); K.Dimroth, K.Wolf & H.Kroke, Liebigs Ann. Chem. 678, 183 (1964); G. Köbrich & D. Wunder, ibid. 654, 131 (1962); J. P.Griot, J. Royer & J.Dreux, Tetrahedron Letters 1969, 2195; J. P. Montillier & J.Dreux, Bull. Soc. chim. France 1969, 3638; J. Royer & J.Dreux, Tetrahedron Letters 1968, 5589; C.r. hebd. Séances Acad. Sci. 258, 5895 (1964); J. P. Schirmann & J.Dreux, Bull. Soc. chim. France 1967, 3896; C.r. hebd. Séances Acad. Sci. 262, 652 (1966); P. Rouillier, D.Gagnaire & J.Dreux, Bull. Soc. chim. France, 1966, 689; A.Hinnen & J.Dreux, ibid. 1964, 1492.
- [8] E.N. Marvell, G. Caple, T.A. Gosink & G.Zimmer, J. Amer. chem. Soc. 88, 619 (1966); T.A. Gosink, Dissertation, Oregon State University 1966 [Diss. Abstr. 27, 3852 (1967)].
- [9] G. Büchi & N.C. Yang, J. Amer. chem. Soc. 79, 2318 (1957).
- [10] G. Maier & M. Wiessler, Tetrahedron Letters, 1969, 4987.
- [11] P. Seifert & H. Schinz, Helv. 34, 728 (1951).
- [12] A. Eschenmoser, J. Schreiber & S.A. Julia, Helv. 36, 482 (1953).
- [13] G.M. Pilling & F. Sondheimer, J. Amer. chem. Soc. 90, 5610 (1968).
- [14] H. Lindlar, Helv. 35, 446 (1952).
- [15] G. V. Smith & R. L. Burwell Jr., J. Amer. chem. Soc. 84, 925 (1962).
- [16] G.O. Schenck & R. Steinmetz, Liebigs Ann. Chem. 668, 19 (1963).
- [17] J. Novak & F. Šorm, Coll. czechosl. chem. Commun. 23, 1126 (1958).
- [18] M. Korach, D. R. Nielsen & W. H. Rideout, J. Amer. chem. Soc. 82, 4328 (1960).
- [19] J. Meinwald, S. S. Labana, L. L. Labana & G. H. Wahl Jr., Tetrahedron Letters 1965, 1789.
- [20] M. Rey & A.S. Dreiding, Helv. 48, 1985 (1965).
- [21] J. K. Crandall, D. B. Banks, R. A. Colyer, R. J. Watkins & J. P. Arrington, J. org. Chemistry 33, 423 (1968).
- [22] E. Dane & K. Eder, Liebigs Ann. Chem. 539, 207 (1939).
- [23] H. Kristinsson, R.A. Mateer & G.W. Griffin, Chem. Commun. 1966, 415.

53. Synthese von terpenartigen bicyclischen Systemen über die Cycloaddition von Dimethylketen an Methylcyclopentadien¹)

von Ulrich A. Huber²) und André S. Dreiding

Organisch-chemisches Institut der Universität Zürich

(5. II. 70)

Summary. The structure of the cyclo-addition products of ketenes (2) and methylcyclopentadiene could not be predicted, since this ketenophile exists as a rapidly equilibrating 45:54:1mixture of the 1- (4), 2- (5) and 5-methyl (6) isomers. We studied this reaction using dimethylketene (2a) with a view to monoterpenoid synthesis. Only two (A and B) of the many possible cyclo-adducts were formed in good yield. Using three methods to generate dimethylketene, the ratios of A:B were 90:6, 77:16 and 55:31 respectively.

The structures of **A** and **B** were proved without making use of the known ketene cyclo-addition rules: Of the many possibilities, all but 7, 8, 9 and 10 were excluded by the C=O and C=C-CH₃ IR.-

Zum Teil aus der Dissertation von Huber [1]. Gegenwärtige Adresse: Department of Chemistry, Stanford University, Californien.

²) Stipendiat des Fonds zur Unterstützung von Doktoranden auf dem Gebiete der Chemie, 1966 bis 1967.

bands and NMR. signals. Structure 7 (filifolone) was rejected by the difference of its NMR. spectrum from those of both A and B, leaving only 8, 9 and 10.

For A, structures 9 and 10 were eliminated by two chemical approaches: (1) Peracetic acid oxidation of a mixture rich in A resulted in a combination of *Baeyer-Villiger* reaction, epoxidation, and epoxide-ketone rearrangement affording a C_{10} -keto-lactone 14, which was cleaved by alkali to acetone and a C_7 -keto-acid 18. (2) Another peracetic acid treatment produced a keto-epoxide 11, which was converted to a diol 22 and then to a diketo-aldehyde 23 with an NMR. doublet for the aldehyde proton.

Of the two structures (9 and 10) left for **B**, the latter was excluded by the NMR. spectrum of keto-epoxide 15 isolated from the peracid treatment of a mixture rich in **B**: A decoupling experiment with 15 showed that the $-CH_2$ - was placed next to the α -carbon of the carbonyl function.

Thus the major cyclo-adduct of dimethylketene and methylcyclopentadiene is $\mathbf{8}$, and the minor product is $\mathbf{9}$. This result demonstrates further ketene cyclo-addition specificities on top of the ones expressed by the three known rules. The different ratios of $\mathbf{8}$: $\mathbf{9}$ are considered to be due to varyingly effective competition between the preliminary interconversion of the methylcyclopentadienes and their cyclo-addition of dimethylketene.

A number of other oxidation and reduction products of 8 are described. One of them proved that C7 had migrated in the *Baeyer-Villiger* reaction.

A partial separation of the enantiomers of the major cycloadduct 8 was achieved. By the use of 0.5 equivalent of three chiral primary amines (31, 32, and 33) to form a *Schiff* base, the excess ketone 8 was in each case distilled off in a chirally enriched form with positive optical rotation. The derived 2.3-dihydroketone 36 was shown to have a positive *Cotton* effect and, by an application of the octant rule, to have the (1R, 5S) chirality orientation.

Einleitung. – Cyclopentadien (1) reagiert mit Ketenen (2) ausschliesslich zu 7substituierten Bicyclo[3.2.0]hept-2-en-6-onen (3) [2] unter Einhaltung der folgenden allgemeinen Additionsregeln: 1) Es reagiert nur eine der zwei Doppelbindungen (2 + 2-Regel) [2] [3], 2) die Anlagerung an die Doppelbindung des Diens ist *cis* («Olefin-*supra*-Regel») [4], und 3) der Carbonylkohlenstoff wird an einen terminalen Kohlenstoff des Diens gebunden («Polaritätsregel») [5]. Diese Reaktionsspezifitäten werden auf eine thermisch begünstigte supra/antara-faciale (2 + 2)-Cycloaddition [6] [7] *via* einen polaren Übergangszustand [5] zurückgeführt. Eine genaue Voraussage über die Struktur von Ketenaddukten mit Methylcyclopentadien war jedoch nicht möglich, da dieses Ketenophil als ein Gemisch der 1-Methyl- (4), 2-Methyl- (5) und

5-Methyl-Isomeren (6) vorliegt, dessen (45:54:1)-Gleichgewichtszusammensetzung [8] durch 1,5-Wasserstoffverschiebungen [9] thermisch relativ schnell [10] erreicht wird. Ein Studium der Reaktion zwischen Methylcyclopentadien und Dimethylketen schien

uns deshalb, und auch im Hinblick auf mögliche Synthesen von terpenartigen Ketonen, wie z.B. Filifolon (7) [11], von Interesse. Auch wenn man die uneingeschränkte

Gültigkeit der oben erwähnten Regeln voraussetzen dürfte (was weiter unten tatsächlich bestätigt wird), müsste man sechs Produkte dieser Cycloaddition in Betracht ziehen, wovon vier monoterpenoide Struktur besitzen. Da die Lage und damit der polare Effekt der Fünfring-Methylgruppe im Verlaufe der Reaktion nicht mit Sicherheit vorausgesagt werden konnte, wollten wir vorsichtshalber mindestens die «Polaritätsregel» als Argument für die Strukturableitung ausschalten. Tatsächlich haben wir unsere Abwandlungs- und Abbaureaktionen (siehe unten) derart gewählt, dass keine der Additionsregeln vorausgesetzt werden müssen, und wir präsentieren unsere Resultate von dieser Sicht.

Cycloaddition. – Frisch monomerisiertes Methylcyclopentadien (**4** bis **6**) [12] in Chloroform addierte Dimethylketen (**2a**), welches *in situ* aus Isobuttersäurechlorid und Triäthylamin hergestellt wurde [13], schon bei tiefer Temperatur sehr schnell. Unter diesen Bedingungen (Methode a) entstand in 81% Ausbeute ein $C_{10}H_{14}O$ -Ketongemisch, das nach Gas-Chromatographie 90% eines Isomeren **A** und 6% eines Isomeren **B** enthielt. Das gleiche Ketongemisch, aber in anderer Zusammensetzung, wurde aus der *in situ* Pyrolyse von Dimethylketen-acylal der Dimethylmalonsäure [14] in Anwesenheit von Methylcyclopentadien (Methode b, A: B = 77:16) oder durch

direktes Einleiten von Dimethylketen in eine Methylcyclopentadienlösung³) (Methode c, $\mathbf{A}: \mathbf{B} = 55:31$) erhalten. Daneben entstanden kleinere Mengen (4–14%) von unidentifizierten Nebenprodukten. Die Faktoren, welche die Isomerenzusammensetzung $\mathbf{A}: \mathbf{B}$ in dieser Cycloaddition bestimmen, werden weiter unten diskutiert. Zunächst müssen die Strukturen abgeleitet werden.

3) Auf diese Weise (Methode c) wurde das Adduktgemisch nach dem für Cyclopentadien beschriebenen Verfahren [15] von der Tennessee Eastman Company, Kingsport, Tennessee, freundlicherweise für uns hergestellt, wofür wir auch an dieser Stelle danken.

⁴⁾ Hier wird das Einhalten der 2+2-Regel bestätigt.

Zur spektroskopischen Charakterisierung wurden das Hauptprodukt **A** und das wichtigste Nebenprodukt **B** mittels präparativer Gas-Chromatographie voneinander getrennt. Die IR.-Spektren (C=O Bande bei 1778–1780 cm⁻¹) zeigen, dass es sich um Cyclobutanonderivate handelt⁴). Beide NMR.-Spektren enthalten ein Signal für eine olefinische Methylgruppe, so dass von den vielen Möglichkeiten nur vier Strukturen, **7**, **8**, **9** und **10**, übrig bleiben. Die *cis*-Ringverknüpfung ergibt sich in **A** wie auch in **B** durch eine H-C1–H-C5 Kopplung von 7–8 Hz⁵). Weiterhin fällt Struktur **7** ausser Betracht, da die NMR.-Spektren von **A** und **B** (s. exper. Teil) deutlich verschieden sind von dem für Filifolon (**7**) beschriebenen [16]⁶). Auf eine genaue Zuordnung von **A** und **B** zu zweien von diesen drei Strukturen auf rein spektroskopischer Basis⁷) wollten wir uns der grossen Ähnlichkeit wegen nicht verlassen müssen, insbesondere auch, weil wir – umgekehrt – nach verlässlichen NMR.-Effekten in diesem Ringsystem suchten [17].

Strukturbeweis der Cycloaddukte 8 und 9. – Argumente für die Strukturen der beiden Cycloaddukte A und B erhielten wir durch verschiedene oxydative Umwandlungen. Wir konzentrierten uns hauptsächlich auf das Hauptisomere A und setzten deshalb meistens das nach Methode a hergestellte Cycloaddukt (Ketongemisch a, bestehend aus 90% A) ein. Nur in einem Fall wurde das nach Methode c hergestellte Ketongemisch c (A:B = 55:31) benützt, um auch ein Umwandlungsprodukt von B zu isolieren. Zunächst verwendeten wir Peressigsäure und isolierten unter leicht verschiedenen Bedingungen vier Produkttypen C bis F, welche durch Epoxidierung (C), durch *Baeyer-Villiger*-Umlagerung (D), durch beide Reaktionen (E) und zusätzlich noch durch eine Epoxid-Keton Hydridverschiebung (F) entstanden waren.

Der klarste Strukturbeweis ergab sich aus einem klassisch chemischen Abbau von \mathbf{F} und sei hier zuerst besprochen. Dieses Ketolacton \mathbf{F} , Smp. 75°, war das Hauptprodukt (39%) aus dem Ketongemisch a, wenn drei Äquivalente Peressigsäure unter kurzer Erwärmung eingesetzt wurden. Es zeigt ein instruktives NMR.-Spektrum mit spezifischen Lösungsmitteleffekten (s. exper. Teil). Beim Erwärmen von \mathbf{F} mit

⁵) Eine Bestätigung der zweifellos auch hier eingehaltenen «Olefin-supra-Regel» kann allerdings durch diesen Befund nicht abgeleitet werden, da eine cis-Verknüpfung von Fünf- und Vierring sich wegen der Enolisierungsmöglichkeit bei der Isolierung ohnehin einstellen würde.

⁶) Filifolon wurde aus Pflanzenmaterial isoliert [11] und z. T. vorher auf zwei unabhängigen Wegen [16] aus Naturstoffen synthetisiert. Die Konstitution ist durch Abbau sichergestellt. Wir danken Herrn Dr. W. F. Erman für die Überlassung einer Kopie dieses Spektrums.

⁷⁾ Wenn man die «Polaritätsregel» zur Strukturargumentation heranziehen will, dann brauchen nur 8 und 9 in Betracht gezogen zu werden. Auf dieser Basis und mit Hilfe einer Feinanalyse der beiden NMR.-Spektren hat Prof: W.v. Philipsborn schon in einem frühen Stadium dieser Arbeit eine Zuordnung von A zu 8 und deshalb von B zu 9 getroffen.

wässeriger Natronlauge destillierte Aceton aus dem Reaktionsgemisch und zurück blieb ein etwa (3:5)-Gemisch von zwei isomeren x-Carboxy-y-methyl-cyclopentanonen $(16, x \neq 2)$. Ein solches Produkt kann nicht aus den Strukturen 9 und 10 entstanden

sein, so dass nur noch das Keton 8 für das Cycloaddukt A in Frage kommt. Das Ketolacton F hat also Struktur 14 und die Retroaldolreaktion findet über das Zwischenprodukt 17 statt; sie bildet 3-Carboxy-5-methyl-cyclopentanon $(18)^8$, welches

sich im alkalischen Medium zu einem *cis/trans*-Gemisch enolisiert. Das NMR.-Spektrum der Ketosäure stimmt mit dieser Interpretation überein.

Durch Einwirkung von zwei Äquivalenten Peressigsäure auf das Ketongemisch c (A:B = 55:31) über kurze Zeit und unter Kühlung entstand ein Gemisch von zwei Epoxiden, **Ca** und **Cb**, im Verhältnis von 5:3, getrennt durch präparative Gas-Chromatographie. Das Hauptepoxid **Ca** muss aus **A** stammen und ist somit 2, 3-exo-Epoxy-3, 7, 7-trimethyl-bicyclo[3.2.0]heptan-6-on (11). Für das aus **B** abgeleitete Epoxid **Cb** kommen also noch Strukturen 15 (aus 9) und 19 (aus 10) in Frage. Eine Entscheidung bringt die Untersuchung einer speziellen Kopplung im NMR.-Spektrum.

Die in diesem Zusammenhang wichtigen Signale (CCl₄) von **Cb** sind: 3,30/ $D \times D \times D$ (J = 16,6 und 7,8 und 4,9), 1 Pr.; 2,59/D (J = 7,8), 1 Pr.; 2,25–2,0/stM, 2 Pr.; δ (Hz). Das Einprotonensignal bei tieferem Feld (3,30 ppm) gehört zum angulären Wasserstoff, welcher α zur Carbonylgruppe liegt (H-C5 in **15** oder H-C1 in **19**), das Einprotonensignal bei höherem Feld (2,59 ppm) gehört zum anderen angulären Wasserstoff (H-C1 in **15** oder H-C5 in **19**)⁹). Das Zweiprotonenmultiplett (2,25–2,0

⁸⁾ Substanz 18 wurde schon früher von Umezawa & Kinoshita und von Shemiakin und Mitarbeitern [18] als potentielles Carcinolyticum synthetisiert. Leider standen uns kein Vergleichspräparat und keine Spektren zur Verfügung.

⁹) Eine Umkehr der chemischen Verschiebungen dieser zwei Protonentypen ist bisher in diesem Ringsystem nur bei ganz speziellen (hier nicht vorhandenen) Substitutionen beobachtet worden.

ppm) wird von der Methylengruppe $(2 \times H-C4)$ verursacht. Die Multiplizität des 3,30-ppm-Signals und insbesondere seine Vereinfachung zu einem Dublett durch Doppelresonanz beim Einstrahlen am 2,25–2,0-ppm-Signal zeigen, dass die Methylengruppe neben dem α -Carbonylkohlenstoff liegt, was nur für Struktur 15 zutrifft. Dementsprechend hat das Keton **B** die Struktur 9.

Diese Schlussfolgerung wird noch durch eine Beobachtung von Dr. Erman [19] bestätigt, dass sich Filifolon mit Bortrifluorid-Ätherat in ein Keton isomerisieren lässt, dessen NMR.-Spektrum mit dem unseres Adduktes **B** identisch ist¹⁰). Struktur **9** ist tatsächlich ein plausibles Umlagerungsprodukt von **7** unter Lewis-Säure-Katalyse, möglicherweise über einen «Bicyclobutonium-Mechanismus», symbolisiert durch **20**.

Andere Oxydationsprodukte von 8. – Im Folgenden beschreiben wir die anderen Oxydationsprodukte des Cycloadduktes A (= 8), welche bei der Suche nach einem Konstitutionsbeweis angefallen waren. Auch das Ketongemisch a (A:B = 8:9 = 90:6) wurde den milderen Peressigsäure-Oxydationsbedingungen unterworfen; dabei isolierten wir neben dem erwarteten Ca = 11 noch das ungesättigte Lacton (D = 12), dessen Spektraleigenschaften nicht sehr aufschlussreich waren. Nach Verseifung entstand 4-Carboxy-3-(2-hydroxy-prop-2-yl)-1-methyl-cyclopenten (21), Smp. 101°, mit einem NMR.-Spektrum, welches zwei diastereotope Methylgruppen (neben der

olefinischen) und die Abwesenheit eines H-Atoms am Carbinol-Kohlenstoff demonstrierte. Bei der *Baeyer-Villiger*-Reaktion war also – wie erwartet – das *gem*-dimethylsubstituierte C7 gewandert.

Das vierte Peressigsäure-Oxydationsprodukt des Cycloadduktes 8, das Epoxylacton $\mathbf{E} (= 13)$, Smp. 72°, wurde durch Flüssigkeitschromatographie aus einem 24-stdg. Ansatz mit 4 Mol-Äqu. Peressigsäure bei Zimmertemperatur isoliert. Während das NMR.-Spektrum von 13 in CCl₄ auch mit Hilfe von Doppelresonanz schwer zu deuten war, zeigte das NMR.-Spektrum seiner Benzollösung durch einen Lösungsmitteleffekt, der bei vielen dieser relativ starren Ringsysteme mit negativen Substituenten die Spektren stark verändert [7] [17], ein unerwartet instruktives Bild. Alle Signale

¹⁰) Wir sind Dr. W. F. Erman für seine freundliche Korrespondenz und für die Überlassung von Spektren zu Vergleichszwecken sehr dankbar.

lassen sich in erster Ordnung analysieren und die Interpretation gelingt so einwandfrei nach Struktur 13 (s. exper. Teil), dass das Spektrum als unabhängiger Beweis für dieses Struktur, und somit für Struktur 8 des Eduktes, gelten kann. Insbesondere schliesst das Spektrum ein Singlett für den Oxiranwasserstoff an irgend einer anderen Stelle der Molekel aus und fixiert somit sowohl die 2,3-Lage der Doppelbindung wie auch die 3-Stellung der Methylgruppe im Edukt 8.

Ein weiterer unabhängiger Beweis für dieselben Strukturaspekte des Cycloadduktes **8** ergibt sich aus der Spaltung der Doppelbindung zu einem Diketoaldehyd, Smp. 61°, dessen Eigenschaften auf die Abwesenheit einer β -Dicarbonylgruppierung (weder Tendenz zur Enolisierung noch zur Fragmentierung) aber auf die Anwesenheit einer Aldehydfunktion mit nur *einem* α -Wasserstoff deuten. Dies kann nur für 2,2-Dimethyl-3-formyl-4*cis*-(2-oxopropyl)-cyclobutanon (23) zutreffen. Wir erhielten

diesen Diketoaldehyd **23** aus Epoxyketon **11** (siehe oben) über eine saure Hydrolyse zum Ketodiol, Smp. 150° (*2exo*, *3endo*-Dihydroxy-3, 7, 7-trimethyl-bicyclo[3.2.0]-heptan-6-on, **22**) und eine anschliessende Perjodatoxydation, oder dann – erst nach etlichen Versuchen und in schlechter Ausbeute – direkt aus dem Keton **8** durch Ozonisierung¹¹).

In vorläufigen Versuchen ozonisierten wir den Kohlenwasserstoff 3,7,7-Trimethyl-bicyclo[3.2.0]hept-2-en (**24**), welcher aus **8** durch Wolff-Kishner-Reduktion oder aus dem p-Toluolsulfonylhydrazon von **8** durch LiAlH₄-Reduktion hergestellt worden war. Trotz katalytisch hydrierender Aufarbeitung des Ozonids wurde nur 1-Carboxy-2, 2-dimethyl-4cis-(2-oxopropyl)-cyclobutan (**25**), Smp. 49°, erhalten. Der erwartete Ketoaldehyd liess sich bei Aufarbeitung mit Zinkstaub, aber erst nach Behandlung mit methanolischer Kalilauge, in Form seines Acetals, dem 2-Dimethoxy-1, 1-dimethyl-3cis-(2-oxopropyl)-cyclobutan (**26**), isolieren. Entsprechend der Struktur

¹¹) Im Falle von 7,7-Diphenyl-bicyclo [3.2.0] hept-2-en-6-on ist Smith und Mitarbeitern [2] die Autarbeitung eines Ozonolysegemisches nicht gelungen.

26, abgeleitet vom Keton **8**, zeigt das NMR.-Spektrum den Acetalwasserstoff als Dublett mit J = 9 Hz.

Das Hauptprodukt (8) der Cycloaddition von Dimethylketen (2a) an Methylcyclopentadien (4 bis 6) wurde mit LiAlH_4 zu einem 46:35-Gemisch der *endo*- und *exo*-

Isomeren von 3,7,7-Trimethyl-bicyclo[3.2.0]hept-2-en-6-ol (**27** und **28**) reduziert. Bei der Reduktion mit Natrium in Alkohol entstanden die gleichen Alkohole **27** und **28** im Verhältnis von 36:64.

Versuche zur Spaltung des racemischen 8. – Unser Interesse, über Keten-Cycloadditionen zu terpenoiden Systemen zu gelangen, legte es nahe, optisch aktive Verbindungen herzustellen. Dies gelang uns durch partielle Racematspaltung unter Zuhilfenahme von optisch aktiven primären Aminen (29), welche mit der Carbonylgruppe von 8 reagierten, vermutlich unter Bildung von Schiff'schen Basen (30). Bei

Verwendung von nur 0,5 Moläquivalent Amin **29** konnte aus dem Reaktionsgemisch direkt ein chiral angereichertes Präparat von **8** abdestilliert werden. Wir nennen dieses Destillat im Weiteren die «Überschussfraktion». Durch Hydrolyse des Destillationsrückstandes wurde gewöhnlich das entgegengesetzt drehende Enantiomere in chiral angereichertem Zustand erhalten; dieses soll im Folgenden «Hydrolysefraktion» heissen. Als optisch aktive Amine wurden (+)-Dehydroabietylamin (**31**), (+)-threo-2-Amino-1-phenyl-propan-1, 3-diol-acetonid (**32**) oder (-)- α -Phenyläthylamin (**33**) verwendet. Die [α]_D-Werte der angereicherten Fraktionen von 3, 7, 7-Trimethyl-bicyclo-[3.2.0]hept-2-en-6-on (**8**), zusammen mit den Ausbeuten bezogen aufeingesetzt es

racemisches Gemisch, sind in nachstehender Tabelle aufgeführt. Die optische Reinheit wurde nicht bestimmt. Im Falle von $(-)-\alpha$ -Phenyläthylamin (33) wurden die *Schiff*'schen Basen 34 isoliert und als Diastereomerengemisch spektroskopisch charakterisiert. Bei dieser Reaktion entstand in kleiner Menge auch das Isobuttersäuresalz 35 von $(-)-\alpha$ -Phenyläthylamin, was auf eine thermische Cyclodissoziation von 8 zu Dimethylketen schliessen lässt.

Resultate der partiellen Racematspaltung von 3,7,7-Trimethyl-bicyclo [3.2.0] hept-2-en-6-on (8) (Die optischen Drehungen wurden bei 23-24° ohne Lösungsmittel (d=0,943 g/ml) in und einem Fall (*) in äthanolischer Lösung (c=3,94 g/100 ml) gemessen.)

Amin	Überschussfraktion		Hydrolysefraktion			
	[α] _D	Ausbeute	1.		2.	
			[α] _D	Ausbeute	[α] _D	Ausbeute
(+)-Dehydroabietyl- amin (31)	+ 3,24°	30%	– 2,24°	33%	- 4,35°	° 9%
(+)-Dehydroabietyl- amin (31)	+ 0,59°	32%	-1,55°	15%	- 0 ,45 °	31%
(+)-threo-2-Amino-1- phenyl-propan-1, 3-diol- acetonid (32)	+ 2,62°	37%	+1,19°	28%	-	-
(–)-a-Phenyläthyl- amin (33)	+1,22°	45%	- 9,62° *	7%	-	-

Zur Bestimmung der *absoluten Konfiguration* dieser angereicherten Enantiomeren zogen wir die Oktantenregel heran, welche nach *Conia et al.* [20] und *Krepinsky et al.* [21] auch für Cyclobutanone Gültigkeit besitzt.

Um zusätzliche chiral-optische Wechselwirkungen zu vermeiden, wurde die Doppelbindung des chiral angereicherten Cycloadduktes 8 ($[\alpha]_D = +2,62^\circ$) hydriert, wobei 0,97 Mol-Äqu. Wasserstoff aufgenommen wurde. Die optische Drehung des gesättigten Ketons 3,7,7-Trimethyl-bicyclo[3.2.0]heptan-6-on mit der 3-Methylgruppe wahrscheinlich in *endo*-Konfiguration **36** betrug $[\alpha]_D = +5,60^\circ$, und der Zirkulardichroismus zeigte einen positiven *Cotton*-Effekt ($\varepsilon_{max} = +0,1030$ bei 308 nm). Das in diesem Präparat angereicherte Enantiomere muss die (1R,5S)-Chiralitätsorientierung besitzen, da beide seiner Konformeren (**37a**) und (**37b**) mehr Atome in positiven Quadran-

ten aufweisen. Somit ist die absolute Konfiguration des Ketons 8 mit positivem *Cotton*-Effekt so wie es in dieser Arbeit durch die Stereoformel von 8 dargestellt wurde.

Mechanistische Überlegungen. – Unter den für den Laborbedarf einfachsten Bedingungen zur Dimethylketen-Herstellung (Methode a, aus Säurechlorid mit t-Amin) ist die Cycloaddition mit hoher Spezifität verlaufen: 90% des Produktes bestand aus 8 und 6% aus 9. Die Strukturen dieser Produkte sprechen dafür, dass auch hier die «2 + 2-Regel», die «Olefin-*supra*-Regel» und die «Polaritätsregel» eingehalten worden waren. Interessanterweise hatten sich unter den Bedingungen der Methode a 90% des Produktes aus 1-Methyl- (4), 6% aus 2-Methyl- (5) und anscheinend nichts aus 5-Methyl-cyclopentadien (6) gebildet, ein Verhältnis, das nicht der Gleichgewichtszusammensetzung der Methylcyclopentadiene entspricht. Dies ist nur erklärlich, wenn 1) die Geschwindigkeit der Gleichgewichtseinstellung unter den Methylcyclopentadienen viel grösser ist als diejenige der Cycloaddition, und 2) die Geschwindigkeit der Addition an 1-Methyl-cyclopentadien etwas grösser ist als diejenige an 2 Methylcyclopentadien. Der zweite Faktor ist plausibel, da die Methylgruppe in 1-Stellung zur Wirksamkeit der Polaritätsregel in der gleichen Richtung (entsprechend Über-

gangszustand 38) beiträgt. Der erste Faktor spielt bei der Cycloaddition unter Methode a eine besonders grosse Rolle, da Triäthylamin wahrscheinlich die Wasserstoffverschiebung in Methylcyclopentadien katalysiert. Mit diesem (ersten) Faktor kann auch die unterschiedliche Isomerenzusammensetzung unter den anderen Cycloadditionsbedingungen in Zusammenhang gebracht werden: Die Spezifität, welche dem Übergangszustand 38 entspricht, ist am kleinsten (8:9 = 55:31), wenn eine grosse Konzentration von Keten ohne Katalysator (Methode c) eingesetzt wird. Die Methode b ist in dieser Beziehung intermediär zwischen a und c. Sowohl 8 als auch 9 sind durch Addition des Ketens an die weniger substituierte Doppelbindung entstanden. Der Übergangszustand 38 bietet eine Erklärung dafür im Falle der Hauptreaktion mit 1-Methylcyclopentadien (4). Diese Selektivität stimmt auch mit dem Resultat entsprechender Reaktionen an Piperylen überein¹²). Im Falle der Nebenreaktion mit 2-Methylcyclopentadien (5) steht diese Selektivität im Widerspruch zu entsprechenden Beobachtungen mit Isopren¹²). Es ist möglich, dass dieser Unterschied mit der Konformation um die zentrale Bindung des Diens zusammenhängt.

Diese Arbeit wurde vom Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung unterstützt. Wir danken auch der Firma Sandoz AG., Basel, und der Firma Firmenich & Cie, Genf, für grosszügige Forschungsbeiträge.

Experimenteller Teil

Allgemeines. – Die Smp. (in Klammern: zur Umkristallisation verwendetes Lösungsmittel) im offenen Röhrchen mit einem Siliconbad-Schmelzpunktapparat (W. Büchi) gemessen, sind unkorrigiert.

Die IR.-, NMR.- und MS.-Spektren wurden mit einem Perkin-Elmer Mod. 21, mit einem Varian A-60 oder, sofern angegeben, zusätzlich mit einem Varian HR-100-Spektrometer und mit einem CEC-Gerät, Typ 21-110 B 70 eV mit Direkteinlass, gemessen. Die Spektren sind in folgender Weise beschrieben: Infrarot-Spektren: IR. (Medium): Banden, durch ihre Frequenzen (cm^{-1}) (und durch rohe Intensitätsangabe s = stark, m = mittel und w = schwach, sowie teilweise durch Interpretationsversuche charakterisiert. - Die Protonenresonanz-Spektren (NMR.) wurden, sofern nicht anders angegeben, in ca. 10-proz. Lösung in Gegenwart von Tetramethylsilan (TMS) als internem Standard gemessen. Die chemischen Verschiebungen der Signale sind in δ -Werten (TMS =0) angegeben, wobei im Falle von interpretierten Multipletten jeweils die Zentren der Signale, unabhängig von den relativen Intensitäten, im Falle von uninterpretierten Multipletten Anfang und Ende der Signale angegeben sind. Die Spektren mit implizierter Interpretation werden in folgender Weise beschrieben: NMR. (Lösungsmittel, Frequenz, wenn zutreffend 100 MHz): δ -Wert in ppm/Multiplizität × Multiplizität (Kopplungskonstanten : $J_{H, H}$ in Hz), relative Intensität in Form der Protonenzahl Pr. (Zuordnung). Die Abkürzungen S, D, T, Q, stM und bM bedeuten nacheinander Singlett, Dublett, Triplett, Quartett, strukturiertes Multiplett und breites Multiplett. Für die Zuordnung sind die Wasserstoffatome entweder durch die dazugehörigen Kohlenstoffatome oder durch die sie enthaltende funktionelle Gruppe bezeichnet. - Massen-Spektren: MS. Die wichtigsten Pike, auf deren Interpretation hier verzichtet wird (Intensität relativ zum stärksten Pik, in %) $m/_{e}$ (%).

Die Gas-Chromatographie (GC.) wurde in den Aerograph-Apparaten A: A-350, B: A-600, C: A-700, D: A-1520 B mit Hitzdraht- (tc.) bzw. Flammenionisations- (fid.) Detektoren ausgeführt. Die Bedingungen sind wie folgt angegeben, GC.: (Kurzbezeichnung des Apparates, Detektortyp, Kolonnentemperatur – ev. Programm-Endtemperatur/Injektortemperatur, Kolonnenlänge in Fuss, %-Gehalt und Art der flüssigen Phase). Die Detektortemperatur lag jeweils im gleichen Bereich wie die Injektortemperatur. Trägergase waren Helium im Falle der tc.-Detektoren und Stickstoff im Falle von fid.-Detektoren. Die Abkürzungen der flüssigen Phase bedeuten: EMU = Emulphor, Ap. = Apiezon, PDEAS = Phenyldiäthanolaminsuccinat, Si. = Silicon. Auf Angaben weiterer Variablen wie feste Phase, «Flow», Kolonnendicke usw. wurde verzichtet. Prozentuale Zusammensetzungen von Gemischen wurde auf Grund der relativen Pikfläche nach der Formel F = Pikbreite auf halber Höhe mal Pikhöhe berechnet.

Mikroanalysen, IR.-Spektren und optische Drehwerte stammen aus unserem Mikrolaboratorium unter der Leitung von H. Frohofer, während die Massenspektren von Prof. Dr. M. Hesse und

¹²) Als Hauptprodukt bei ähnlichen Reaktionen mit Piperylen haben sowohl Huisgen & Otto [3] als auch Bartlett, Montgomery & Seidel [22] ausschliesslich eine Addition an die weniger substituierte Doppelbindung beobachtet. Mit Isopren jedoch fand in beiden Fällen eine bevorzugte Cycloaddition an die stärker substituierte Doppelbindung statt.

Hrn. Bild aufgenommen wurden. Die NMR.-Spektren sind von den Herren Dr. A. Dieffenbacher, K. Hermann, H. R. Niemela, M. Rey, T. Winkler und Dr. H. Wyler gemessen worden. Die Zirkulardichroismus-Kurven wurden von W. Hug auf einem Apparat Jouan-CD-185 aufgenommen. Den genannten und auch anderen ungenannten Helfern sei an dieser Stelle herzlich gedankt.

3,7,7-(8) resp. 2,7,7-Trimethylbicyclo[3.2.0]hept-2-en-6-on (9). – Methode a: Zu 240 g (3,0 Mol) frisch monomerisiertem Methylcyclopentadien [12] und 250 g (2,34 Mol) Isobuttersäurechlorid in 1000 ml Chloroform wurden innert 2 Std. unter Eiskühlung und Rühren 250 g (2,5 Mol) Triäthylamin in 250 ml Chloroform getropft. Nach 36-stdg. Stehen bei Zimmertemperatur wurde filtriert, mit Äther nachgespült, das Filtrat viermal mit Wasser gewaschen, über Na₂SO₄ getrocknet, im Rotationsverdampfer eingedampft und bei 80–90°/14 Torr fraktioniert. Ausbeute 283 g (81%); Sdp. 176–179°.

C₁₀H₁₄O (150,21) Ber. C 79,95 H 9,39% Gef. C 80,07 H 9,61%

Die analytische GC. (C. tc. 143/200°, 12 Fuss, 12% PDEAS) zeigte zwei Hauptprodukte A und B mit den Mengenanteilen 90:6, neben 4 Teilen unbekannter Produkte.

Methode b: 2 g (25 mMol) monomerisiertes Methylcyclopentadien [12], 0,92 g (5 mMol) Dimethylketen-acylal der Dimethylmalonsäure [13] und 50 mg Pottasche wurden unter einer Stickstoffatmosphäre während 60 Min. unter Rückfluss gekocht und darauf bei $60-90^{\circ}/14$ Torr destilliert. Das Destillat wog 1,7 g und zeigte im GC. (C. tc. 187/210°; 15 Fuss, 12% EMU) 62-Anteil-% (72% Ausbeute) der beiden obigen Hauptprodukte A und B in einer Zusammensetzung von 77:16. Durch präparative GC.-Trennung (Bedingung wie in Methode a) wurden die beiden Hauptprodukte 3,7,7- (8) bzw. 2,7,7-Trimethyl-bicyclo[3.2.0] hept-2-en-6-on (9) voneinander getrennt und in dieser Reihenfolge eluiert.

Spektren von 8: IR. (CCl₄): 3050 (w) C=C-H; 2970 (s) CH₃; 1778 (s) Vierringketon; 1645 (w) C=C; 1443 (m) -CH₂- cm⁻¹. - NMR. (CCl₄, 60/100 MHz): 5,35-5,2/bM, 1 Pr. (H-C2); 3,85/D × D × D ($J_{5,1} = J_{5,4\,exo} = 7,4 \& J_{5,4\,endo} = 3,7$), 1 Pr. (H-C5); 3,01/D × M ($J_{1,5} = 7,4$), 1 Pr. (H-C1); 2,5-2,2/bM, 2 Pr. (H-C4*endo*+*exo*); 1,76/Sextett (J = 1), 3 Pr. (CH₃ an C3); 1,24/S, 3 Pr. (*exo*-CH₃ an C7); 0,93/S, 3 Pr. (*endo*-CH₃ an C7); δ (Hz). -MS.: 150 (4), 135 (1,6), 122 (12), 107 (20), 91 (4,8), 80 (94), 70 (16), 28 (100) m/e (%). $d^{24} = 0,943$ g/ml.

Spektren von 9: IR. (CCl₄): 3050 (w) C=C-H; 2970 (s) CH₃; 1780 (s) Vierringketon; 1642 (w) C=C; 1445 (m) -CH₂- cm⁻¹. - NMR. (CCl₄, 60/100 MHz): 5,44–5,3/bM, 1 Pr. (H-C3); 3,81/D × D × D ($J_{5,1} = J_{5,4exo} = 8,0 \& J_{5,4endo} = 3,4$), 1 Pr. (H-C5); 2,88/D × M ($J_{1,5} = 8,0$), 1 Pr. (H-C1); 2,6–2,3/bM, 2 Pr. (H-C4); 1,74/Oktett (J = 1), 3 Pr. (CH₃ an C2); 1,27/S, 3 Pr. (exo-CH₃ an C7); 0,99/S, 3 Pr. (endo-CH₃ an C7); δ (Hz).

8

Q

3exo, **8**, **8**-**Trimethyl-7-oxabicyclo**[**3**. **3**. **0**]**octa-2**, **6**-**dion** (**14**). – 90 g ca. 40-proz. Peressigsäure (ca. 0,6 Mol) wurden in 300 ml Methylenchlorid gelöst. Die über Na₂SO₄ getrocknete Lösung wurde filtriert und ohne Kühlung auf einmal mit 30 g (0,2 Mol) Cycloaddukt **8** (6% Isomeres **9** enthaltend) versetzt. Das Gemisch erwärmte sich bis zur Siedetemperatur des Lösungsmittels. Nach 1 Std. gab man wasserfreie Soda zu, bis kein Schäumen mehr auftrat (ca. 15g). Die Lösung wurde filtriert, zweimal mit Wasser gewaschen, über Na₂SO₄ getrocknet und im Rotationsverdampfer eingedampft. Rückstand 27,5 g Öl, das nach GC. (*D*. tc. 100–180/250°, 5 Fuss, 5% Carbowax), neben **11** (6%), **13** (15%) und unbekannten Produkten, 55 Anteil-% (14,1 g oder 39% Ausbeute) *3exo*, 8, 8-Trimethyl-7-oxabicyclo [3.3.0]octa-2, 6-dion (**14**) enthielt. Das Hauptprodukt wurde durch fraktionierte Destillation bei 68–74°/0,15 Torr gereinigt, Smp. (Äther/Pentan) 74–75°.

IR. (KBr): 2970 (m) -CH₃; 1763 (s) γ -Lacton; 1740 (s) Fünfringketon; 1460 (s) CH₂; cm⁻¹. - NMR. (CCl₄, 60/100 MHz): 3,34/ $D \times bD$ ($J_{5,1} = 9,3$ & $J_{5,4\,exo} = 7, 3$), 1Pr. (H-C5); 2,63/D ($J_{1,5} = 9,3$), 1 Pr. (H1); 2,55/ $D \times D$ ($J_{4,4} = 12,0$ & $J_{4,3} = 8,2$), 1 Pr. (Hendo-C4); 2,08/ $D \times Q$ ($J_{3,4\,endo} = 6,0$ & $J_{3,CH_3 an C3} = 5,7$). 1 Pr. (Hendo-C3); 1,76/ $D \times D$ ($J_{4,4} = 12,0$ & $J_{4,5} =$ 7,3), 1 Pr. (Hexo-C4); 1,47/S, 3 Pr., und 1,35/S, 3 Pr. (2 × CH₃ an C8); 1,08/D

 $(J_{CH_{3} \text{ an } C3,3} = 5.7)$, 3 Pr. (exo-CH₃ an C3). NMR. (Benzol, 60/100 MHz): 2,82/ $D \times D$ ($J_{5,1} = 9.0 \& J_{5,4exo} = 7.5$), 1 Pr. (H-C5); 2,37/ $D \times bD$ ($J_{4,4} = 11.8 \& J_{4,3} = 7.9$), 1 Pr. (Hendo-C4); 2,02/D ($J_{1,5} = 0.9$), 1 Pr. (H-C1); 1,66/ $D \times Q$ ($J_{3,4endo} = 7.9 \& J_{3,CH_{4} \text{ an } C3} = 6.3$), 1 Pr. (Hendo-C3); 1,20/ $D \times D$ ($J_{4,4} = 11.8 \& J_{4,5} = 7.5$), 1 Pr. (Hexo-C4); 1,19/S, 3 Pr., und 1,00/S, 3 Pr. (2 × CH₃ an C8); 0,83/D ($J_{CH_{4} \text{ an } C3,3} = 6.3$), 3 Pr. (CH₃ an C3); δ (Hz). - MS.: 182 (35), 167 (5), 138 (4,6), 124 (5.8), 110 (23), 95 (19,6), 82 (100) m/e (%).

In einem anderen Experiment wurden 75 mg 2, 3-exo-Epoxy-3endo, 8, 8-trimethyl-7-oxabicyclo [3.3.0] octan-6-on (13, siehe später) während 100 Min. in einem Gemisch von 1 ml 40-proz. Peressigsäure und 3 ml Methylenchlorid unter Rückfluss gekocht, dann wurde neutralisiert und wie oben aufgearbeitet. Das Produkt zeigte sich, abgesehen von etwas Verunreinigung, mit der oben beschriebenen Verbindung 14 nach GC. und IR.-Spektrum identisch.

3-Carboxy-5-methyl-cyclopentanon (18). 105 mg (0,58 mMol) des im vorangehenden Experiment beschriebenen kristallinen «Ketolactons» 14 wurden in 25 ml 10 N Natronlauge gekocht. Das entstehende Aceton wurde laufend abdestilliert und als 2, 4-Dinitrophenylhydrazon gefällt. Ausbeute an Aceton-2, 4-dinitrophenylhydrazon 82 mg (57%), durch Smp. (Äthanol/Wasser) 123–124° (Lit.: 125°) und stimmende Elementaranalyse identifiziert.

Die zurückgebliebene, alkalische Lösung wurde mit (1:1)-verdünnter Salzsäure angesäuert, mit NaCl gesättigt und viermal mit Äther ausgeschüttelt. Die Ätherphasen wurden über NaSO₄ getrocknet, eingedampft und der Rückstand destilliert (80–100°/0,02 Torr): 70 mg (85%) *cis*- und *trans*-3-Carboxy-5-methyl-cyclopentanon (**18**, etwa 1:1). – IR. (CCl₄): 2960 (*s*) CH₃; 3500–2500 (*s*, breit) –COOH; 1745 (*s*) Fünfringketon; 1710 (*s*) Säure-C=O; cm⁻¹. – NMR. (CCl₄): 10,76/S, 1 Pr. (–COOH); 3,4–2,9/*bM*, 1 Pr. (H–C3); 2,8–1,3/*stM*, 5 Pr. (H–C2, H–C4 und H–C5); 1,10/*D* ($J_{CH_3 an C5, H-C5} = 6,2$) und 1,06/*D* ($J_{CH_3 an C5, H-C5} = 6,2$), zusammen 3 Pr. (CH₃ des *cis*- und des *trans*-Stereoisomeren); δ (Hz). Die Verbindung wurde schon früher hergestellt [16]. Die dazugehörigen Spektren sind uns jedoch nicht bekannt, so dass ein Vergleich hier nicht möglich ist.

2,3-exo-Epoxy-3endo,7,7-trimethyl-bicyclo[3.2.0]heptan-6-on (11) und 3,8,8-Trimethyl-7-oxabicyclo[3.3.0]oct-2-en-6-on (12). – Zu 6 g (0,04 Mol) frisch destilliertem 3,7,7-Trimethyl-bicyclo[3.2.0] hept-2-en-6-on (8) (6% Isomer 9 enthaltend) und 10 g wasserfreier Soda in 150 ml Methylenchlorid wurden innert 30 Min. mit Eiskühlung und Rühren 36 g 40-proz. Peressigsäure (ca. 0,2 Mol) getropft. Unter Erwärmung auf Zimmertemperatur wurde während 200 Min. weitergerührt und anschliessend dreimal mit Wasser ausgeschüttelt. Die Methylenchloridphase wurde über Na₂SO₄ getrocknet, filtriert und eingedampft. Der Rückstand (7,9 g) enthielt nach GC. (C. tc. 178/210°, 5 Fuss, 10% EMU) 39 Anteil-% 2,3-exo-Epoxy-3endo,7,7-trimethylbicyclo[3.2.0] heptan-6-on (11, 35% Ausbeute) und 36 Anteil-% 3,8,8-Trimethyl-7-oxabicyclo [3.3.0] oct-2-en-6-on (12, 32% Ausbeute), neben 15 Anteil-% Edukt 8 und 10 Anteil-% unbekannter Produkte. Die präparative Isolierung der Verbindungen 11 und 12 erfolgte durch Flüssigkeitschromatographie auf einer 4×50 cm Kieselgelsäule mit einem Gemisch von 85% Hexan und 15% Aceton «Merck».

Das 2,3-exo-Epoxy-3endo,7,7-trimethyl-bicyclo [3.2.0] heptan-6-on (11) wurde durch GC. unter obigen Bedingungen nachgereinigt.

IR. $(CCl_4): 2960 (s) CH_3; 1772 (s) Vierringketon; 1307 (m) Epoxid; cm⁻¹. – NMR. <math>(CCl_4, 60/100 \text{ MHz}): 3,40/D \times D \times D (J_{5,1} = J_{5,4\,exo} = 7,4 & J_{5,4\,endo} = 4,9), 1 Pr. (H-C5); 3,10/S, 1 Pr. (H-C2); 2,60/D (J_{1,5} = 7,4) 1 Pr. (H-C1); 2,05-1,85/stM, 2 Pr. (H-C4); 1,41/S, 3 Pr. (CH_3 an C3); 1,19/S, 3 Pr. (exo-CH_3 an C7); 1,07/S, 3 Pr. (endo-CH_3 an C7); <math>\delta$ (Hz). Die Nachbarschaft von H-C5 mit H-C1 und H-C4 wurde durch Doppelresonanzexperimente bestätigt: Bestrahlung bei 3,4 ppm machte aus 2,60/D ein S und vereinfachte das 2,05 bis 1,85/stM stark.

C₁₀H₁₄O₂ (166,21) Ber. C 72,26 H 8,49% Gef. C 72,33 H 8,39%

Das angereicherte Präparat von 3,8,8-Trimethyl-7-oxabicyclo [3.3.0] oct-2-en-6-on (12) wurde im Kugelrohr bei 90°/0,5 Torr als zähflüssiges Öl destilliert. Nach GC. bestand es aus 85% 12 und 15% einer unbekannten Verbindung, welche sich im NMR.-Spektrum durch zwei scharfe Singlette bei 1,20 und 1,14 ppm bemerkbar machte.

IR. (CCl₄): 3040 (w) C=C-H; 2910 (s) CH₃; 1768 (s) Fünfringlacton; 1653 (m) C=C; cm⁻¹. – NMR. (CCl₄): 5,32-5,15/bS, 1 Pr. (H–C2); 3,3-3,1/stM, 2 Pr. (H-C1 und H-C5); 2,6-2,4/bM, 2 Pr. (H-C4); 1,77/bS, 3 Pr. (CH₃ an C3); 1,36/bS, 6 Pr. $(2 \times CH_3 \text{ an } C8)$; δ (Hz). – MS.: 166 (6,5), 151 (4,0), 138 (4,8), 107 (6,2), 91 (3,7), 80 (100) m/e (%).

2,3-exo-Epoxy-2endo,7,7-trimethyl-bicyclo[3.2.0]heptan-6-on (15). - Die im vorangehenden Experiment beschriebene Reaktion wurde mit einem Isomerengemisch von Trimethylbicyclo [3.2.0] hept-2-en-6-on bestehend aus 55% 8 und 31% 9 (nach Methode c) hergestellt) wiederholt. Die beiden Epoxide 11 und 15 cntstanden im obigen relativen Verhältnis. Das gewünschte Produkt 15 (aus 9 entstanden) wurde durch GC. (C. tc. 180/210°, 5 Fuss, 10% EMU) vom Isomeren 11 abgetrennt.

NMR. (CCl₄, 60/100 MHz): 3,30/ $D \times D \times D$ ($J_{5,4\,exo} = 10,6 \& J_{5,1} = 7,8 \& J_{5,4\,endo} = 4,9$), 1 Pr. (H–C5); 3,30/bS, 1 Pr. (H–C3); 2,59/D ($J_{1,5} = 7,8$), 1 Pr. (H-C1); 2,25-2,0/stM, 2 Pr. (H-C4); 1,49/S, 3 Pr. (CH₃ an C2); 1,18/S, 6 Pr. (2×CH₃ an C7); (Hz). Enthopplung: Bestrahlung bei 2,15 ppm macht $3,30/D \times D \times D$ zu D (J = 7,8); das 3,30/S bleibt erhalten. Bestrahlung bei 3,3 ppm vereinfacht das Multiplett bei $\sim 2,1$ sehr stark.

4-Carboxy-3-(2'-hydroxy-prop-2-yl)-1-methyl-cyclopent-1-en (21a). - 0,6 g des gereinigten oben erhaltenen Lactons 12 wurde in überschüssiger 10 N Natronlauge 1 Std. unter Rückfluss gekocht. Die abgekühlte Lösung wurde mit verdünnter H_2SO_4 neutralisiert, dreimal mit Äther ausgeschüttelt, über Na_2SO_4 getrocknet und eingedampft, Ausbeute 6,6 g (100%) (21 a) als farblose Kristalle, Smp. (CCl₄) 99-101°.

IR. (KBr): 3425 (s) Hydroxyl; 2970 (breit) Carboxyl; 1708 (s) C=O usw.; cm⁻¹. - NMR. (CDCl_a): 6,90/bS, 2 Pr. (-OH und -COOH), wandern bei Zugabe von Trifluoressigsäure (TFA); 5,16/M, 1 Pr. (H2); 3,3-3,0/stM, 2 Pr. (H3 und H4); 2,8–2,5/M, 2 Pr. (H5); 1,75/bS, 3 Pr. (CH₃ an C1); 1,29/S, 3 Pr., und 1,17/S, 3 Pr. $(2 \times CH_3 \text{ an } C2'); \delta$ (Hz).

> $C_{10}H_{16}O_3$ (184,23) Ber. C 65,19 H 8,75% Gef. C 65,17 H 8,73%

Die Säure 21 a wurde in ätherischer Lösung mit überschüssigem Diazomethan versetzt. Nach 5 Min. wurde mit 2N HCl geschüttelt, über Na₂SO₄ getrocknet und eingedampft. Zurück blieb 3-(2'-Hydroxy-prop-2-yl)-4-methoxycarbonyl-1-methyl-cyclopenten (21b) als ein gelbes Öl.

IR. (CCl₄): 3450 (m) -OH; 2920 (s) CH₃; 1723 (s) C=O; 1658 (w) C=C; cm⁻¹. – NMR. (CCl₄): 5,19/M, 1 Pr. (H–C2); 3,64/S, 3 Pr. (COOCH₃); 3,03/Tunscharf (J = 6), 2 Pr. (H-C3 und H-C4); 2,65/S, 1 Pr. (-OH), wandert mit TFA; 2,6–2,3/M, 2 Pr. (H–C5); 1,73/bS, 3 Pr. (CH₃ an C1); 1,12/S, 3 Pr., und 1,07/S, 3 Pr. $(2 \times CH_3 \text{ an } C2')$; δ (Hz).

2, 3-exo-Epoxy-3endo, 8, 8-trimethyl-7-oxabicyclo[3.3.0]octan-6-on (13). -Die Epoxidierung von 3,7,7-Trimethyl-bicyclo[3.2.0] hept-2-en-6-on (8) wurde wie oben beschrieben mit einem 30-proz. Peressigsäure-Überschuss angesetzt, jedoch wurde der Ansatz während 24 Std. bei Zimmertemperatur stehengelassen und darauf analog aufgearbeitet. Das GC. (D. tc. 100-180/ 250°, 5 Fuss, 5% Carbowax) zeigte die folgenden Produkte in den angegebenen Ausbeuten: 46% 2, 3-exo-Epoxy-3 endo, 7, 7-trimethyl-bicyclo [3.2.0] heptan-6-on (11), 13 % 3,8,8-Trimethyl-7-oxabicyclo[3.3.0] oct-2-en-6-on (12) und 20% 2, 3-exo-Epoxy-3 endo, 8, 8-trimethyl-7-oxa-bicyclo-[3.3.0] octan-6-on (13). Das letztere (13) wurde durch Flüssigkeitschromatographie in Form von grossen farblosen Kristallen isoliert, Smp. (Pentan/Äther) 72-72,5°.

IR. (CCl₄): 2980 (s) CH₃; 1770 (s) γ -Lacton; 1452 (m) CH₂; 1255 (s) Epoxid; cm⁻¹. - NMR. (Benzol, 60/100 MHz): 2,82/bS, 1 Pr. (H-C2); 2,76/ $\begin{array}{l} D\times D\times D \;(J_{5,1}=9,0 \;\&\; J_{5,4\,exo}=9,7 \;\&\; J_{5,4\,endo}=6,6),\; 1 \; \mathrm{Pr.} \;(\mathrm{H-C5});\; 2,52/\\ bD \;(J_{1,5}=9,0),\; 1 \; \mathrm{Pr.} \;(\mathrm{H-C1});\; 2,17/D\times bD \;(J_{4,4}=14,4 \;\&\; J_{4,5}=9,7),\; 1 \; \mathrm{Pr.} \\ \end{array}$ (Hexo-C4); 1,70/ $D \times D$ $(J_{4,4} = 14,4 \& J_{4,5} = 6,6)$, 1 Pr. (Hendo-C4); 1,13/S, 3 Pr., 1,09/S, 3 Pr., und 0,97/S, 3 Pr. (3×CH_a an C3 und C8); δ (Hz). In CCl₄ zeigt sich ein komplexeres NMR.-Spektrum.

> C₁₀H₁₄O₃ (182,21) Ber. C 65,91 H 7,74% Gef. C 65,72 H 7,46%

12

COOCH₃

OH

21 b

13

2exo, 3endo-Dihydroxy-3exo, 7, 7-trimethyl-bicyclo[3.2.0]heptan-6-on (22). 0,40 g (1,93 mMol) 80-proz. reines 2, 3-exo-Epoxy-3endo, 7, 7-trimethyl-bicyclo[3.2.0] heptan-6-on (11) wurde mit 15 ml $2 \times H_2SO_4$ in 2 ml Pentan während 7 Std. kräftig geschüttelt. Darauf neutralisierte man die wässerige Phase mit Ammoniak und schüttelte sechsmal mit Äther aus. Die Ätherphasen wurden über Na₂SO₄ getrocknet und eingedampft, wobei 275 mg des über Nacht kristallisierten, nach GC. (D. tc. 100–180/250°, 5 Fuss, 5% Carbowax) zu 90% reinen 2exo, 3endo-Dihydroxy-3exo, 7, 7-trimethyl-bicyclo[3.2.0] heptan-6-ons (22) zurückblieben; 70% Ausbeute, Smp. (CHCl₃/CCl₄) 149–150°.

IR. (KBr): 3440 und 3370 (s) OH; 2950 (m) CH₂; 2900 (m) -CH₂-; 1760 (s) Vierringketon (in CCl₄ aufgenommen bei 1772); cm⁻¹. - NMR. (CDCl₃ und TFA, 60/100 MHz): 4,24/D ($J_{2,1} = 2,8$), 1 Pr. (Hendo-C2); 3,84/D × D × D ($J_{5,4\,endo} = J_{5,4\,endo} = 5,9 \& J_{5,1} = 8,7$), 1 Pr. (H-C5); 2,53/D × D ($J_{1,5} = 8,7 \& J_{1,2} = 2,8$), 1 Pr. (H-C1); 2,15-1,95/D × M ($J_{4,5} = 5,9$), 2 Pr. (H-C4); 1,38/S, 3 Pr., 1,34/S, 3 Pr., und 1,21/S, 3 Pr. (3 × CH₃ an C3 und C7); δ (Hz). Die endo- bzw. exo-Stellungen der Hydroxylgruppen sind aus mechanisti-

schen Überlegungen abgeleitet und nicht experimentell gesichert. In Pyridin erhält man ein Spektrum, welches nicht nur andere chemische Verschiebungen, sondern auch andere Kopplungskonstanten zeigt. Wahrscheinlich verursacht das polarere Lösungsmittel die Bevorzugung einer anderen Konformation.

C₁₀H₁₆O₃ (184,23) Ber. C 65,19 H 8,75% Gef. C 65,05 H 8,89%

2, 2-Dimethyl-3-formyl-4cis-(2-oxopropyl)-cyclobutanon (23). – a) Durch Perjodatspaltung aus 2, 3-Dihydroxy-3, 7, 7-trimethyl-bicyclo [3.2.0] heptan-6-on (22): Die analytische Perjodatspaltung des oben beschriebenen Diols 22 wurde in überschüssiger Kaliumperjodatlösung mit nachfolgender Rücktitration nach Zugabe von 0,02N Arsenitlösung mit 0,02N Jodlösung ausgeführt. Innert 3 Tagen wurden 1,03 Äquivalente Perjodat verbraucht.

Präparativ wurden 270 mg (1,47 mMol) des Diols 22 und 2,6 mMol KJO₄ in 15 ml Wasser gelöst und während 22 Std. bei Zimmertemperatur stehengelassen. Die Lösung wurde mit NaCl gesättigt, fünfmal mit Äther ausgeschüttelt und die Ätherphasen über Na₂SO₄ getrocknet und eingedampft. Die Ausbeute an 2, 2-Dimethyl-3-formyl-4*cis*-(2-oxopropyl)-cyclobutanon (Diketoaldehyd 23) betrug 280 mg, nach GC. (D. tc. 100–180/250°, 5 Fuss, 5% Carbowax) zu 90% reines Produkt (96%), Smp. (Äther/Pentan) 61–61,5°.

IR. (CCl₄): 2960 (m) CH₃; 2800/2720 (m) Aldehyd-(C-H)-Dublett; 1785 (s) Vierringketon; 1730 (Schulter) und 1723 (s) Aldehyd und Methylketon; cm⁻¹. – NMR. (CCl₄): 9,70/D ($J_{3,Aldehyd} = 2,3$), 1 Pr. (Aldehyd-H); 3,90/D×T ($J_{4,3} = 10,7$; $J_{4,1'} = 6,8$), 1 Pr. (H-C4); 3,20/ D×D ($J_{3,4} = 10,7 \& J_{3,Aldehyd} = 2,3$), 1 Pr. (H-C3); 3,0-2,85/stM, 2 Pr. (H-C1'); 2,09/S, 3 Pr. (H-C3'); 1,42/S, 3 Pr. und 1,19/S, 3 Pr. (2×CH₃ an C2); δ (Hz).

C₁₀H₁₄O₃ (182,21) Ber. C 65,91 H 7,74% Gef. C 65,80 H 7,65%

b) Durch Ozonolyse von 3,7,7-Trimethyl-bicyclo[3.2.0] hept-2-en-6-on (8): 6 g (40 mMol) Cycloaddukt 8 (6% 9 enthaltend) in 33 ml Essigester wurden 3 Std. mit einem Welsbach-Ozonisator an einer Spannung von 150 V ozonisiert. Die gelbliche Lösung wurde in Anwesenheit von 0,5 g Palladium auf Aktivkohle während 2 Std. hydriert, wobei 0,88 Mol-Äqu. Wasserstoff aufgenommen wurden. Nun wurde die Lösung filtriert, eingedampft, in Pentan aufgenommen und dreimal kräftig mit Wasser ausgeschüttelt. Die Wasserphasen wurden mit Kochsalz gesättigt, fünfmal mit Äther ausgeschüttelt und die Ätherphasen über Natriumsulfat getrocknet und eingedampft. Der Rückstand von 5,94 g eines gelblichen Öls zeigte im GC. (C. tc. 180/210°, 5 Fuss, 20% Si) 70 Anteil-% an 2,2-Dimethyl-3-formyl-4*cis*-(2-oxopropyl)-cyclobutanon (23) (57% Ausbeute, sofern keine Polymere entstanden). Das instabile Produkt wurde unter grossem Verlust destilliert (80 bis 100°/0,4 Torr) und anschliessend ein zweites Mal dem gleichen Verteilungsgang unterzogen. Es liessen sich schliesslich 0,3 g (4%) des kristallinen Diketoaldehyds 23 isolieren (Smp. 56-58°), welcher nach NMR. mit dem oben beschriebenen Produkt identisch war.

3,7,7-Trimethyl-bicyclo[3.2.0]hept-2-en (24). – Zu einer Lösung von 0,4 Mol KOH in 150 ml Triäthylglykolwurden 0,3 Mol 98% Hydrazinhydrat und 0,1 Mol 3,7,7-Trimethyl-bicyclo-

[3.2.0] hept-2-en-6-on (8) gegeben und während zwei Std. unter Rückfluss gekocht. Darauf destillierte man vorerst ein Gemisch von Wasser und Hydrazinhydrat und später das 3,7,7-Trimethylbicyclo[3.2.0] hept-2-en über eine Kolonne. Das Produkt wurde mit Wasser gewaschen, über CaSO₄ getrocknet und bei 147–149° destilliert: 12 g (91%).

IR. (CCl_4) : 3021 (w) C=C-H; 2940 (s); 2870 (s); 1664 (w) C=C; 1460 (m); 1441 (s); 1378 (m); 1365 (m); cm⁻¹. - NMR. (CCl_4) : 5,26/bM, 1 Pr. (H-C2); 2,8-2,5/stM, 2 Pr. (H-C1 und H-C5); 2,4-1,3/stM, 4 Pr. (H-C4 und H-C6); 1,73/bS, 3 Pr. (CH_3-C3) ; 1,16/S, 3 Pr. $(CH_3exo-C7)$; 0,86/S, 3 Pr. $(CH_3endo-C7)$; δ (Hz). Mit etwas gutem Willen kann die folgende Interpretation dieses NMR.-Spektrums vorgeschlagen werden: 5,26/bS, 1 Pr. (H-C2); 2,9-2,6/M, 2 Pr. (H-C4): 2,63/D (I = 7.2), 1 Pr. (H-C1): 2,25/D × M (I = 7.2), 1 Pr. (H-C5)

5 24

(H-C4); 2,63/D (J = 7,2), 1 Pr. (H-C1); 2,25/D × M (J = 7,2), 1 Pr. (H-C5); 2,1-1,9/M, 1 Pr. (Hexo-C6); 1,85-1,6/M, 1 Pr. (Hendo-C6); 1,73/bS, 3 Pr. (CH₃ an C3); 1,16/S, 3 Pr. (CH₃exo an C7); 0,86/S, 3 Pr. (CH₃endo an C7); δ (Hz).

C₁₀H₁₆ (136,24) Ber. C 88,17 H 11,83% Gef. C 88,16 H 11,76%

Man erhielt die Verbindung **24** auch durch 24-stdg. Kochen unter Rückfluss eines Gemischs von 6,4 g (20 mMol) 3,7,7-Trimethyl-bicyclo[3.2.0] hept-2-en-6-on-*p*-tosylhydrazon, Smp. 152°, 1,5 g (40 mMol) LiAlH₄ und 200 ml Äther. Nach Zugabe von Wasser und 10-proz. HCl trennte man die Ätherphase ab und wusch sie mit HCl, mit 10-proz. NaOH und mit Wasser. Der Rückstand aus dem getrockneten Äther wurde bei $20^{\circ}/0.05$ Torr destilliert und bestand nach GC. und NMR.-Spektrum aus 85% 3,7,7-Trimethyl-bicyclo[3.2.0] hept-2-en (**24**) und etwa 15% Edukt **8**.

1-Carboxy-2, 2-dimethyl-4 cis-(2-oxopropyl)-cyclobutan (25). 30 mMol 3,7,7-Trimethyl-bicyclo-[3.2.0] hept-2-en (24) wurden in 30 ml Essigester 2 Std. bei -60° ozonisiert. In Anwesenheit von 0,9 g 5-proz. Palladium auf BaSO₄ nahm die Lösung 0,54 Mol.-Äqu. (16,2 mMol) Wasserstoff auf und wurde filtriert. Durch Schütteln mit ges. Hydrogensulfitlösung konnte kein Aldehyd abgetrennt werden. Die zurückgebliebene organische Phase wurde über Na₂SO₄ getrocknet, eingedampft und bei 100-130°/0,05 Torr destilliert. Nach 14 Tagen Stehen wurden einige Kristalle (4,3 mMol 14% bez. auf 24) von 1-Carboxy-2,2-dimethyl-4*cis*-(2-oxopropyl)-cyclobutan (25) von der uneinheitlich viskosen Masse abfiltriert, mit Pentan gewaschen und bei 140°/0,07 Torr destilliert: Smp. 47-49°, Jodoformtest positiv.

IR. (CCl_4) : 3000 (breit) -COOH; 2930 (s); 1710 (Schulter); 1696 (s); 1418 (s); cm⁻¹. - NMR. (CCl_4) : 10,52/S, 1 Pr. (-COOH); 3,2-2,6/stM, 4 Pr. (H-C1, H-C1' und H-C4); 2,07/S, 3 Pr. (H-C3'); 2,0-1,6/stM, 2 Pr. (H-C3); 1,34/S, 3 Pr., und 1,12/S, 3 Pr. $(2 \times CH_3-2)$; δ (Hz).

C₁₀H₁₆O₃ (184,22) Ber. C 65,2 H 8,74% Gef. C 65,25 H 8,93%

1,1-Dimethyl-2-dimethoxymethyl-3cis-(2-oxopropyl)-cyclobutan (26). 2,2 g (16 mMol) 3,7,7-Trimethyl-bicyclo[3.2.0] hept-2-en (24) in 12 ml Methanol wurden 1 Std. bei -60° ozonisiert. Das Gemisch wurde mit 9 ml Eisessig, 9 ml Wasser und 2 g Zinkstaub versetzt und erwärmt. Darauf gab man Wasser dazu und schüttelte viermal mit Äther aus. Die vereinigten Ätherphasen wurden über CaSO₄ getrocknet, eingedampft und bei 70°/0,01 Torr destilliert: 1,5 g gelbes, stark riechendes Öl, welches im GC. (C, tc. 190/210°, 15 Fuss, 12% PDEAS) zwei Hauptkomponenten im Verhältnis von 72:28 zeigte.

0,7 g dieses Gemisches wurde in 4 ml 12-proz. methanolischer Kalilauge 4 Std. unter Rückfluss gekocht, das Produkt mit Wasser versetzt und mit Äther ausgeschüttelt. Die Ätherphase wurde getrocknet, eingedampft und bei $110^{\circ}/0,01$ Torr destilliert; Ausbeute 0,2 g des stark riechenden 2-Dimethoxymethyl-1,1-dimethyl-3*cis*-(2-oxopropyl)-cyclobutans (**26**), das nach GC. (C, tc. 190/210°, 15 Fuss, 12% PDEAS) zu über 90% rein war. Im Destillationskolben blieb eine grosse Menge Harz zurück.

IR. $(CCl_4): 2907$ (s); 2825 (Schulter); 1767 (m); 1704 (s); 1670 (m); 1456 (s); 1437 (s); cm⁻¹. NMR. $(CCl_4): 4,40/D$ (J = 9,0), 1 Pr. $(HC(OCH_3)_2-R);$ 3,18/S,3 Pr., und 3,03/S, 3 Pr. $(2 \times OCH_3, \text{ diastereotop}); 2,9-1,6/stM, 4$ Pr. (H-C2, H-C3 und H-C1'); 1,98/S, 3 Pr. (H-C3'); 1,5-1,1/stM, 2 Pr. (H-C4);1,13/S, 3 Pr., und 1,00/S, 3 Pr. $(2 \times CH_3-1); \delta$ (Hz).

exo-(28) und endo-3,7,7-Trimethyl-bicyclo[3.2.0]hept-2-en-6-ol (27). – Eine Suspension von 0,22 Mol LiAlH₄ in 80 ml Äther wurde langsam mit 15 g (0,1 Mol) 3,7,7-Trimethyl-bicyclo[3.2.0]hept-2-en-6-on (8) versetzt und 30 Min. bei Zimmertemperatur gerührt. Darauf wurden Methanol, später Wasser und schliesslich $6 \times$ HCl zugetropft. Die Ätherphase wurde abgetrennt, über Na₂SO₄ getrocknet, eingedampft und bei 85–90°/8 Torr destilliert. Das gelbe Öl zeigte im GC. (A, fid. 100/200°, 3 Fuss, 15% EMU) neben 5 Teilen Edukt (8) und 14 Teilen unbekannten Produkten 46 Teile endo- (27) und 35 Teile exo-3,7,7-Trimethyl-bicyclo[3.2.0]hept-2-en-6-ol (28); Ausbeute 66%. Präparative GC. (C, tc. 200/230°, 8 Fuss, 20% EMU) ergab in dieser Reihenfolge den zu 91% angereicherten endo-Alkohol 27 und den zu 78% angereicherten exo-Alkohol 28.

exo-3,7,7-Trimethyl-bicyclo [3.2.0] hept-2-en-6-ol (**28**): IR. (CCl₄): 3600 (m) O-H; 3350 (breit) O-H; 3040 (w) C=C-H; 2950 (s); 2890 (s); 1640 (w); 1545 (s); cm⁻¹. – NMR. (CCl₄): 5,3-5,2/M, 1 Pr. (H2); 4,15/bS, 1 Pr. (OH); 3,47-3,32/stM, 1 Pr. (Hendo-C6); 2,7-2,5/stM, 2 Pr. (H-C1 und H-C5); 2,4 bis 2,1/stM, 2 Pr. (H-C4); 1,72/bS, 3 Pr. (CH₃-C3); 1,04/S, 3 Pr. (CH₃exo-C7); 0,90/S, 3 Pr.(CH₃endo-C7); δ (Hz).

C₁₀H₁₆O (152,23) Ber. C 78,89 H 10,59% Gef. C 78,78 H 10,50%

endo -3,7,7-Trimethyl-bicyclo [3.2.0] hept-2-en-6-ol (27): IR. (CCl₄): 3550 (m) und 3450 (w) O-H; 3020 (w) C=C-H; 2930 (s); 1643 (w); 1645 (s); cm⁻¹. - NMR. (CCl₄): 5,3-5,1/M, 1 Pr. (H-C2); 3,72/D × D ($J_{6,5} = 7,4 \& J_{6,1} = 2,1$), 1 Pr. (Hexo-C6); 3,2-2,5/stM, 3 Pr. (H-C1, H-C5 und OH); 2,4-2,1/stM, 2 Pr. (H-C4); 1,8-1,65/M, 3 Pr. (CH₃-C3); 1,13/S, 3 Pr. (CH₃exo-C7); 0,77/S, 3 Pr. (CH₃endo-C7); δ (Hz).

C₁₆H₁₆O Ber. C 78,89 H 10,59% Gef. C 78,81 H 10,60%

Durch Reduktion des Ketons 8 mit Na in Äthanol und analoge Aufarbeitung erhielt man in 75% Ausbeute ein Alkoholgemisch 27 und 28 mit einer *endo/exo-*Zusammensetzung von 36:64.

Spaltung des racemischen 3,7,7-Trimethyl-bicyclo[3.2.0]hept-2-en-6-ons (8). – Die in der Folge angegebenen optischen Drehungen wurden entweder ohne Lösungsmittel (keine Konzentration angegeben) oder in alkoholischer Lösung in Konzentrationen von 15 bis 40 mg/ ml (Konzentration angegeben) gemessen.

a) Mit (+)-Dehydroabietylamin (31): 7,5 g (50 mMol) 3,7,7-Trimethyl-bicyclo[3.2.0] hept-2en-6-on (8) und 7,1 g (25 mMol) (+)-Dehydroabietylamin¹³) [23] wurden in 40 ml Benzol vier Std. unter einem Wasserabscheider rückfliessend gekocht. Die Lösung wurde eingedampft und aus dem Rückstand das noch vorhandene, chiral angereicherte Edukt bei 40°/0,05 Torr abdestilliert. Nach nochmaliger Destillation dieser Fraktion isolierte man 2,2 g (30% der eingesetzten Menge) der Überschussfraktion des Ketons 8 mit $[\alpha]_2^{24} = +3,24^\circ$.

Der Rückstand (vermutlich die *Schiff*'sche Base) wurde in Benzol aufgenommen, mit 2 ml (33 mMol) Eisessig versetzt und eingedampft, worauf sich 2,5 g (33%) der «Hydrolysefraktion» des Ketons **8** im Hochvakuum abdestillieren liessen: $[\alpha]_{22}^{22} = -2,24^{\circ}$. Der neue Rückstand wurde in Hexan aufgenommen, viermal mit heissem Wasser ausgeschüttelt, getrocknet, eingedampft und im Hochvakuum destilliert. Ausbeute der zweiten «Hydrolysefraktion» des Ketons **8** 0,7 g (9%), mit $[\alpha]_{22}^{24} = -4,35^{\circ}$. Dieselbe Prozedur mit einem auf andere Art gereinigten (+)-Dehydroabiethylamin-Präparat, lieferte eine «Überschussfraktion» (32% Ausbeute) mit $[\alpha]_{22}^{22} = +0,59^{\circ}$ und zwei «Hydrolysefraktion» mit $[\alpha]_{22}^{23} = -1,55^{\circ}$ (15%) und $[\alpha]_{22}^{22} = -0,45^{\circ}$ (31%).

b) Mit (+)-cis-5-Amino-2, 2-dimethyl-6-phenyl-1, 3-dioxan [(+)-threo-2-Amino-1-phenylpropan-1, 3-diol-acetonid] (32): Mit der gleichen Menge (7,5 g, 50 mMol) des Ketons 8 und unter den gleichen Bedingungen wurden 5,17 g (25 mMol) des (+)-cis-5-Amino-2, 2-dimethyl-6-phenyl-1, 3dioxans [(+)-threo-2-Amino-1-phenyl-propan-1, 3-diol-acetonid]¹⁴) zur Racematspaltung eingesetzt. Die «Überschussfraktion» des Ketons 8 (37%) zeigte $[\alpha]_{D}^{22} = +2,62^{\circ}$ und CD. in Isooctan $(\Delta \varepsilon_{max} = +0,142$ bei 301,5 nm). Die erste «Hydrolysefraktion» (28% an 8) zeigte erstaunlicherweise ebenfalls eine positive Drehung mit $[\alpha]_{D}^{22} = +1,19^{\circ}$.

¹³) Freundlicherweise von Prof. Dr. J. Kiss und der Firma F. Hoffmann-La Roche & Co. AG, Basel, zur Verfügung gestellt.

¹⁴) Freundlicherweise von Prof. Dr. K. Weinges, Universität Heidelberg, zur Verfügung gestellt.

c) $Mit (-)-\alpha$ -Phenyläthylamin (33): 2,0 g (16,5 mMol) angereichertes $(-)-\alpha$ -Phenyläthylamin (*Fluka*, $[\alpha]_{\rm D} = -27^{\circ}$, opt. Reinheit 68%) und 5 g (33 mMol) frisch destilliertes 3,7,7-Trimethylbicyclo[3.2.0] hept-2-en-6-on (8, 6% 9 enthaltend) wurden in 30 ml Hexan 1 Std. unter Rückfluss gekocht, wobei sich einige Tropfen Wasser abschieden. Nach Abdampfen des Hexans und einer Woche Stehen wurden 2,2 g (45%) einer «Überschussfraktion» des nach GC. reinen Ketons 8 mit $[\alpha]_{\rm D}^{24} = +1,22^{\circ}$ bei 30°/0,03 Torr abdestilliert. Aus dem Rückstand sublimierte bei 70°/0,10 Torr 0,5 g (7% bezogen auf das Keton 8) des *Isobuttersäuresalzes von* $(-)-\alpha$ -Phenyläthylamin (35, Smp. 112-113°), dessen IR.- und NMR.-Spektren mit jenen des authentisch hergestellten Präparates identisch waren. In einer dritten Fraktion destillierten 3 g (36% bezogen auf 8) eines Gemisches der zähflüssigen *Diastereomeren der* Schiff'schen Basen 34 von $(-)-\alpha$ -Phenyläthylamin und 3,7,7-Trimethyl-bicyclo[3.2.0] hept-2-en-6-on (8), Sdp. 100°/0,01 Torr, die im GC. (D, fid. 200/220°, 5 Fuss, 5% EMU) zwei Banden im Intensitätsverhältnis von ca. 43:57 zeigten.

IR. (CCl_4) : 3030 (Schulter); 2930 (s); 1970–1800 (w) C_6H_5 ; 1703 (s) C=N; 1600(w); 1495 (s); 1447 (s); cm⁻¹. – NMR. (CCl_4) : 7,3–7,0/stM, 5 Pr. (C_6H_5) ; 5,4–5,1/stM, 1 Pr. (H–C2); 4,6–4,2/stM, 1 Pr. (H–C1'); 3,8–3,4/stM, 1 Pr. (H–C5); 2,9–2,7/bM, 1 Pr. (H–C1); 2,5–2,0/stM, 2 Pr. (H–C4); 1,8–1,4/stM, 3 Pr. (CH_3-C3) ; 1,4–1,0/stM, 9 Pr. $(2 \times CH_3-C7, H-C2')$; δ (Hz). Das gesamte NMR.-Spektrum erweckt den Eindruck, dass jedes der beschriebenen Multiplette die Überlagerung zweier Signale der entsprechenden Protonen in den beiden Diastereomeren darstellt, deren relative Intensitäten ein Verhältnis von etwa 35:65 vermuten lassen.

 $CH_3 - C - H$ N 5 - 12 $N = 300^{7}$ 34

36

C₁₈H₂₃N (253,39) Ber. C 85,32 H 9,15 N 5,53% Gef. C 85,41 H 9,12 N 5,39%

3 g (11,8 mMol) dieses Schiff'schen Basengemisches **34** wurden in Hexan aufgenommen, zweimal mit 5-proz. Essigsäure, einmal mit 0,1 N Natronlauge und zweimal mit H₂O geschüttelt. Die organische Phase wurde über Na₂SO₄ getrocknet und eingedampft. Bei 50°/0,01 Torr destillierte 0,35 g (7%) der «Hydrolysefraktion» des nach GC. zu über 95% reinen Ketons **8** mit einem Drehwinkel von $[\alpha]_{23}^{23} = -9,62^{\circ}$ (c=3,94). Zurück blieb 0,8 g der unzersetzten Schiff'schen Base **34**.

Chiral angereichertes 3 endo, 7, 7-Trimethyl-bicyclo [3.2.0] heptan-6-on (**36**). 1,5 g (10 mMol) chiral angereichertes 3, 7, 7-Trimethyl-bicyclo [3.2.0] hept-2-en-6-on (**8**), $[\alpha]_{22}^{22} = +2,62^{\circ}$, wurde in 8 ml Cyclohexan mit 0,4 g 10-proz. Palladium auf Kohle während 5 Std. hydriert, wobei 0,97 Mol.-Äquiv. Wasserstoff aufgenommen wurde. Man filtrierte, dampfte ein und destillierte das Produkt **36** bei 60°/0,01 Torr als farbloses Öl. GC. (D. fid. 90/200°, 5 Fuss, 5% QF) zeigte eine Reinheit von ca. 92%. $[\alpha]_{22}^{23} = +5,60^{\circ}$ (c=1,5); CD. in Isooctan ($\Delta \varepsilon_{max} = +0,1030$ bei 308 nm).

IR. $(CCl_4): 2940 (s); 2870 (m); 1772 (s)$ Vierringketon; 1460 (m); cm⁻¹. – NMR. $(CCl_4): 4,0-3,4/stM$, 1 Pr. (H-C5); 2,7-2,2/stM, 1 Pr. (H-C1); 2,2-1,1/stM, 5 Pr. (H-C2, H-C3 und H-C4); 1,24/S, 3 Pr. $(CH_3exo-C7); 1,03/D J = (6,0), 1$ Pr. $(CH_3endo-C3); 1,01/S, 3$ Pr. $(CH_3endo-C7); \delta$ (Hz).

LITERATURVERZEICHNIS

- [1] Ulrich A. Huber, Dissertation, Philos. Fakultät II, Universität Zürich 1969.
- [2] H. Staudinger & P. J. Meyer, Helv. 7, 19 (1924); T.L. Dawson & G. R. Ramage, J. chem. Soc. 1950, 3523; S. J. Smith, C.L. Agre, R.M. Leekley & W.W. Prichard, J. Amer. chem. Soc. 61, 7 (1939).
- [3] R. Huisgen & P. Otto, Tetrahedron Letters 1968, 4491.
- [4] G. Binsch, L.A. Feiler & R. Huisgen, Tetrahedron Letters 1968, 4497.
- [5] J.D. Roberts & C.M. Sharts, «Organic Reactions 12», S.1, J.Wiley & Sons Inc. New York 1962; W.T. Brady & H.R.O'Neal, J. org. Chemistry 32, 612, 2704 (1967); R.Huisgen, L.A. Feiler & P.Otto, Tetrahedron Letters 1968, 4485.
- [6] R. Hoffmann & R. B. Woodward, J. Amer. chem. Soc. 87, 4388 (1965); R. B. Woodward & R. Hoffmann, Angew. Chem. 81, 797 (1969).
- [7] M. Rey, S. Roberts, A. Dieffenbacher & A.S. Dreiding, Helv. 53, 417 (1970).
- [8] S. McLean & P. Haynes, Tetrahedron Letters 1964, 2385.
- [9] W. R. Roth, Tetrahedron Letters 1964, 1009.

- [10] V.A. Mironov, E.V. Sobolev & A.N. Elizarova, Tetrahedron 19, 1939 (1963).
- [11] R. B. Bates, M. J. Onore, S. K. Paknikar, C. Steelink & E. P. Blanchard, Chem. Commun. 1967, 1037.
- [12] M. B. Glaser, Ind. Engng. Chemistry 51, 703 (1959).
- [13] L.L. Miller & J. R. Johnson, J. org. Chemistry 1, 135 (1936); R.N.Lacey, Kapitel S.1169 in «The Chemistry of Alkenes», herausgeg. von S. Patai, Interscience, New York 1964.
- [14] H. Bestian & D. Günther, Angew. Chem. 75, 841 (1963).
- [15] J.C. Martin, P.G.Gott, V.W.Goodlett & R.H.Hasek, J. org. Chemistry 30, 4175 (1965).
- [16] J. J. Beereboom, J. org. Chemistry 30, 4230 (1965); W. F. Erman, J. Amer. chem. Soc. 89, 3828 (1967).
- [17] A. Dieffenbacher, S. Roberts, M. Rey, U. Huber & A.S. Dreiding, unveröffentlichte Arbeit.
- [18] S. Umezawa & M. Kinoshita, Bull. chem. Soc. Japan 30, 267 (1957) [Chem. Abstr. 52, 4506c (1958)]; M. M. Shemiakin, M. N. Kolosov, M.G. Karapechan & V. Y. Rodionov, Ž. obšč. Chim. 28, 2068 (1958) [Chem. Abstr. 53, 2228e (1959)].
- [19] W. F. Erman, private Mitteilung vom Februar 1967.
- [20] J. M. Conia & J.L. Ripoll, Bull. Soc. chim. France 1963, 768.
- [21] J. Krepinsky, Z. Samek, F. Sorm, D. Lamparsky, P. Ochsner & Y.-R. Naves, Tetrahedron 22, Supplement 8, 53 (1966).
- [22] P.D. Bartlett, L.K. Montgomery & B. Seidel, J. Amer. chem. Soc. 86, 616 (1964).
- [23] W. J. Gottstein & L. C. Cheney, J. org. Chemistry 30, 2072 (1965).

54. Die Synthese des corticotrop hochaktiven [1-D-Serin, 17, 18-dilysin]- β -corticotropin-(1-18)-octadecapeptidamids¹)

von B. Riniker und W. Rittel

Chemische Forschungslaboratorien des Departements Pharmazeutika der CIBA Aktiengesellschaft, Basel

(6. II. 70)

Summary. A synthesis is described of [1-D-serine, 17, 18-dilysine]- β -corticotropin-(1-18)-octadecapeptide amide (I), a short chain ACTH analogue which has been found to possess in animals and also in man high and prolonged corticotropic activity. Synthesis was carried out by the fragment condensation approach involving, in the last build-up step, coupling of the protected sequences 1-10 and 11-18. From the protected octadecapeptide derivative 1-18 the free peptide was obtained in high yield by acidolysis.

Bei Versuchen, ACTH-Peptiden durch Abwandlung der Aminosäuresequenz erhöhte Wirkdauer zu verleihen, haben wir vor einigen Jahren die Beobachtung gemacht [2], dass der Ersatz von L- durch D-Serin in Stellung 1 des β -Corticotropin-(1-24)-tetracosapeptids [3] die corticotrope Wirkung dieses ACTH-Fragments um das 5-bis 10fache erhöht. Ein ähnlicher Befund ist auch von *Boissonnas* und Mitarbeitern beschrieben worden [4]. In der Folge zeigte sich, dass diese Strukturveränderung allgemein bei ACTH-Peptiden ganz verschiedener Kettenlänge zu entsprechender Wirkungsverstärkung führt [5]. Insbesondere aber liessen sich durch gleichzeitigen Ersatz von L-Serin 1 durch D-Serin, sowie der beiden Argininreste 17 und 18 durch Ornithin- oder Lysin-Reste, ACTH-Peptide gewinnen, die nicht nur erhöhte, sondern auch stark verlängerte Wirkung besassen. Aus einer Reihe derart abgewandelter

Zu der verwendeten abgekürzten Schreibweise für Aminosäuren, Peptide und ihre Derivate vgl. [1]; es bedeuten: Boc-: t-Butyloxycarbonyl-; But-: t-Butyl-; Z-: Benzyloxycarbonyl-.